

A Few EMF Perspectives on Climate and Energy Modeling

J. Weyant

EIA-WEPS Climate Modeling Workshop On-Line June 29th, 2022

Outline

- Climate Change Definitions and Nomenclature
- The Importance of Understanding Uncertainty
- EMF 36 on Trade and Coalition Formation
- EMF 33 on Global Bio-Energy, Includning Trade
- Some other Relevant EMF Studies
 - EMF 28 on European Climate Policy Options
 - EMF 30 on Short Lived Climate Forcers

Some Useful Energy and Climate EMF Accounting Nomenclature

- Anthropogenic CO_2 emissions come from fossil fuel & energy use, and land use.
- GHGs (carbon dioxide, methane, nitrous oxide and the industrial gases) lead to positive changes in radiative forcing (RF), and Short-Lived Climate Forcers (Black and Organic Carbon and Sulfate Aerosols) SLCFs currently lead to net negative changes in RF.
- Changes in RF lead to changes in temperature with lags (decades to centuries).
- The relationships between emissions and concentrations, concentrations and RF, RF and realized temperature change, and realized temperature change and equilibrium temperature change are all uncertain.
- The current CO₂ concentration is about 420 ppm, GHG concentration about 490 ppm CO₂e, the RF from GHGs and SLCFs is about 2.0 watts/m², realized temperature change is about 1.1 degree C and the equilibrium temperature change is about 1.5 degrees C with respect to pre-industrial levels.
- <u>Solar Radiation Management (SRM)</u> can reduce RF directly and <u>Direct Air</u> <u>Capture (DAC)</u> can Reduce CO₂ Concentrations in the atmosphere directly

Example of the Implications of Uncertainty The Risk of Overshooting a Target Like 2°C

Source: Hare and Meinshausen (2004). PIK Rpt. #93.

EMF 36: Climate Policies after Paris: Pledge, Trade and Recycle

Objectives

- Economic impact assessment of Nationally Determined Contributions (NDCs) by 2030
- Cost savings from coordinated CO₂ emissions pricing (emissions trading)
- Household-level incidence of CO₂ pricing and revenue recycling in individual countries

Christoph Böhringer, Sonja Peterson, Thomas F. Rutherford, Jan Schneider, Malte Winkler (2021). <u>"Climate policies after Paris: Pledge, Trade and Recycle: Insights from the 36th</u> <u>Energy Modeling Forum Study (EMF 36</u>)," From Special Issue of *Energy Economics*, Vol. 103, pp 1-16, November.

EMF 36 Scenario Dimensions

- **Ambition** of emission reduction pledge (NDC)
- Degree of international **cooperation** (cross-country emissions trading)

EMF36 core scenarios.	
Acronyms	Description
Ambition	
NDC	Translation of unconditional nationally determined contributions
NDC+	Translation of conditional nationally determined contributions
NDC-2C	Scaling of NDC+ emission levels to reach 2°C temperature goal
Cooperation	
ref	Reference case where each region reaches its reduction target without
	further international emissions trading
global	Emissions trading across all regions and sectors
partial	Emissions trading across all regions in EITE and power sectors
eur-chn	Emissions trading between Europe and China in EITE and power sectors
asia	Emissions trading between China, Japan and South Korea in EITE and
	power sectors

• Policy appraisal: Impacts in % change from business-as-usual in 2030 (**BaU**)

Table 5

- 2030 GDP and CO2 based on the International Energy Outlook (EIA)
- 2030 GDP and CO_2 based on the World Energy Outlook (IEA)

Fig. 3. Global welfare effects for three different ambition levels (NDC, NDC+, NDC-2C) and two polar cases of emissions trading (ref, global). Note: The lighter shaded bars represent welfare changes in ref. The darker shaded bars represent welfare changes in global.

- NDC/ref: → NDC-2C/ref: 0.43% → 0.94% (mean)
- NDC/global \rightarrow NDC-2C/global: 0.15% \rightarrow 0.47% (mean)

Insight: Cost savings from carbon trading pays for 2°C compatible NDC pledges

EMF 36: Net Trade Of Primary Bioenergy, In EJ/Year, Positive Values Indicate Net Exports.

(Vassilis Daioglou, et al., Climatic Change https://doi.org/10.1007/s10584-020-02877-1)

EMF 36: Implications Of Climate Change Mitigation Strategies on International Bioenergy Trade

Definitions of Some Key EMF-28 Scenarios E

H' I	Vľ	74	111
	LVA	/	111
	- 44-4		

Climate policy dimension	Policy dimension for the EU	Policy dimension for the Rest of the World (ROW)	Default	Higher energy efficiency
No Policy Baseline	No policy	No policy	BASE	
Reference	Including the 2020 tar- gets and 40% GHG reduction by 2050	Moderate policy scenario; no emission trading across macroregions (but trade within macro- regions e.g., within EU)	40% DEF	40% EFF
Mitigation 1	80% GHG reduction by 2050 (with Cap and Trade within the EU, a carbon market in the EU only)	Moderate policy scenario; no emission trading across macroregions (but trade within macro- regions e.g., within EU)	80% DEF	80% EFF
Mitigation 2	80% GHG reduction by 2050 (with Cap and Trade within the EU, 2 separate carbon markets)	IMAGE 2.9 scenario; full emission trading for ROW, but no emission trading between ROW and EU. Regional rela- tive contributions to mitigation based on the Mitigation 1 scenario	80% FRAG	80% FRAG_EFF
Mitigation 3	80% GHG reduction by 2050 (with full Cap and Trade, 1 global carbon market)	IMAGE 2.9 scenario; emis- sion trading is allowed between all regions	80% GLOB	80% GLOB_EFF

Enrica De Cian, Ilkka Keppo, Johannes Bollen, Samuel Carrara, Hannah Förster, Michael Hübler, Amit Kanudia, Sergey Paltsev, Ronald D. Sands, and Katja Schumacher. "European-Led Climate Policy Versus Global Mitigation Action: Implications On Trade, Technology, and Energy." *Climate Change Economics*, Vol. 4, Suppl. 1 (2013).

CO2 Emissions in the No Policy Baseline, Reference, and ^{meth} Mitigation Scenarios for EU-27 (solid lines, right axis) and the World (dashed lines, left axis) in the Default Technology Case

11

EMF 30: Short Lived Climate Forcers Uncertainty Analysis for 2040 Temperature Change, Relative to Reference Scenario

Global-Mean Temperature - 2040 Change From Reference

Steven Smith, et al. (2020). "Impact of methane and black carbon mitigation on forcing and temperature: a multi-model scenario analysis." *Climatic Change*, 163:1427–1442, https://doi.org/10.1007/c10584.020.02704.3

The End Thank You

Computable General Equilibrium Models

- Microeconomic foundation: welfare analysis
- Comprehensive coverage of market interactions: intermediate demands and bilateral trade
- Origination and spending of income: expenditure and income effects
- Calibration of technologies and preferences based on empirical data: cost shares and elasticities

Key:

i: commodity; *r* (alias *s*): region *M*: import; *C*: consumption, *Y*: production; *A*: Armington composite; *RA*: Income of representative agent, *L*: labor endowment; *K*: capital endowment Source: Böhringer and Löschel (2006)

Incidence Across Households EMF

Model	Specification	Specific country
BC3	Single-country	Spain
IEG	Single-country	India
TEA	Multi-region	Brazil
CEPE	Multi-region	Belgium, Cyprus, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Latvia, Lithuania, Poland, Portugal, Slovakia, Slovenia, Spain, United Kingdom, Bulgaria, Croatia, Romania
JRC-GEM-E3	${\rm Multi-region} + {\rm soft-link}^*$	Austria, Belgium, Czech Republic, Germany, Estonia, Greece, Spain, Finland, France, Italy, Romania
SNoW	Multi-region	Norway
DREAM	Multi-region	China
UOL	Multi-region	Germany

^{*} JRC-GEM-E3 feeds its macroeconomic results for 11 European countries into the EUROMOD-ITT (Indirect Tax Tool) in order to perform the household impact assessment.

Decomposition of aggregate expenditure and income across income deciles
Lump-sum recycling of CO₂ revenues in equal shares across households

Incidence Across Households (NDC/ref) EMF

Fig. 10. Summary on decomposition of households' total welfare into expenditure and income effects across models and regions. Note: Box–Whisker plot shows the median (line), mean (green triangle), the first and third quartile (box), and whiskers showing the last datapoints within 1.5 times the interquartile range (IQR). Outliers omitted. Graph incorporates values from the models BC3 (Spain), IEG (India), UOL (Germany), SNoW (Norway), JRC-GEM-E3-EUROMOD-ITT (11 European countries), and CEPE (21 European countries).

Progressive income effect dominates regressive expenditure effect

Insight: Lump-sum recycling of carbon rents offsets regressive emissions pricing

EMF36 Insights: Pledge, Trade and Recycle

 Cost savings from carbon trading pays for 2°C compatible NDC pledges

• Lump-sum recycling of carbon rents offsets regressive emissions pricing

Fig. 4.4 Incidence of a CO₂ price of 100€/tCO₂ – model variant: IO

Table 1

Expert teams participating in the EMF36 model comparison study.

Model	Institution	People
CEPE ^b	ETH Zürich	Florian Landis, Gustav Fredriksson, Sebastian Rausch
ICES ^c	Euro-Mediterranean Center on Climate Change (CMCC)	Ramiro Parrado
DART Kiel ^c	Kiel Institute for the World Economy (IfW)	Sonja Peterson, Malte Winkler, Sneha Thube
DREAM ^c	Fudan University	Haoqi Qian, Shuaishuai Zhang, Libo Wu
EC-MSMR ^c	Environment and Climate Change Canada	Nick Macaluso, Peter Johnston, Madanmohan Ghosh, Elisabeth Gilmore
EDF-GEPA ^b	Environmental Defense Fund (EDF)	Gökçe Akin-Olçum, Ruben Lubowski, Margaret McCallister
JRC-GEM-E3°	European Commission - Joint Research Centre (JRC)	Toon Vandyck, Matthias Weitzel, Krzysztof Wojtowicz, Luis Rey Los Santos, Anamaria Maftei, Sara Riscado
ENVISAGE ^c	Purdue University	Maksym Chepeliev, Israel Osario-Rodarte, Dominique van der Mensbrugghe
SNoW ^b	Statistics Norway	Taran Fæhn, Hidemichi Yonezawa
TEA ^c	COPPE - Universidade Federal do Rio de Janeiro (UFRJ)	Rafael Garaffa, Bruno Cunha, Talita Cruz, Paula Bezerra, André Lucena, Angelo Gurgel
TUB ^b	Technical University (TU) Berlin	Mohammad M. Khabbazan, Christian von Hirschhausen
C-GEM ^c	Tsinghua University	Duan Maosheng, Li Mengyu
UOL ^b	University of Oldenburg	Christoph Böhringer, Jan Schneider
WEGDYN ^c	Wegener Center for Climate and Global Change - University of Graz	Jakob Mayer, Anna Dugan, Gabriel Bachner, Karl Steininger
PACE ^b	Zentrum für Europäische Wirtschaftsforschung (ZEW)	Sebastian Rausch
IEG ^{a, c}	Institute of Economic Growth India (IEG)	Basanta Pradhan, Joydeep Ghosh
BC3 ^{a,b}	Basque Centre for Climate Change (BC3)	Xaquín Garcia Muros, Iñaki Arto, Mikel González-Eguino

^aSingle-country model.

^bStatic model.

^cRecursive-dynamic model.

EMF 36 Regions and Sectors

Table 2

EMF36 sectors and regions.

Countries and regions	Sectors
Countries	Energy
United States (USA)	Coal
Canada (CAN)	Petroleum and coal products
Japan (JPN)	Crude oil
South Korea (KOR)	Natural gas
Russia (RUS)	Electricity
China (CHN)	Other sectors/aggregates
India (IND)	Energy-intensive and trade-exposed (EITE) ^b
Brazil (BRA)	Transport
Aggregated regions	Agriculture
Australia and New Zealand (ANZ)	Other manufacturing
Europe (EUR) ^a	Services
Middle East (MEA)	
Africa (AFR)	
Other Americas (OAM)	
Other Asia (OAS)	

^aIncludes EU27 + UK + EFTA members.

^bIncludes chemical products; basic pharmaceutical products; rubber and plastic products; non-metallic minerals; mining of metal ores; iron and steel; non-ferrous metals; paper, pulp, and print.

Fig. 1. Reduction targets for CO_2 emissions from fossil fuel combustion for different ambition levels (in % from 2030 BaU projections based on IEO or WEO). Note: ALL — Global average; AFR — Africa; ANZ — Australia and New Zealand; BRA — Brazil; CAN — Canada; CHN — China; EUR — Europe; IND — India; JPN — Japan; KOR — South Korea; MEA — Middle East; OAM — Other Americas; OAS — Other Asia; RUS — Russia; USA — United States. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

- Substantial differences in NDC (implicit willingness-to-pay) across regions
- Global emissions (IEO): 10% (12%) NDC (NDC+) as compared to 21% in NDC-2C

EMF 28 EU Technology and HG Mitigation Scenario Matrix

		Default w CCS	Default w/o CCS	Pessimistic	Optimistic	Green
		on	off	off	on	off
		ref	ref	low	ref	low
		ref	ref	ref	high	high
		ref	ref	ref	high	high
	Policy dimension for the Rest of the World (ROW)					
	no policy	EU11				
) on	a "moderate policy" scenario, e.g. with OECD going for -20%; no emission trading across macroregions (but trade within macroregions e.g. within EU)	EU1	EU2	EU3	EU4	EU5
	a "moderate policy" scenario, e.g. with OECD going for -20%; no emission trading across macroregions (but trade within macroregions e.g. within EU)	EUG	EU7	EU8	EU9	EU10
	450ppme scenario from the global study; full					